MATH SOLVE

4 months ago

Q:
# The ratio of the radii of two spheres is 3:5. What is the ratio of their: a)Surface Area:b)Volumes:

Accepted Solution

A:

[tex]\dfrac{Area_1}{Area_2} = \bigg( \dfrac{Length_1}{Length_2} \bigg)^2 [/tex]

[tex] \dfrac{Area_1}{Area_2} = \bigg( \dfrac{3}{5} \bigg)^2 [/tex]

[tex] \dfrac{Area_1}{Area_2} = \dfrac{9}{25} [/tex]

-------------------------------------------------------------------

Answer: The ratio of area = 9 : 25

-------------------------------------------------------------------

[tex]\dfrac{Volume_1}{Volume_2} = \bigg( \dfrac{Length_1}{Length_2} \bigg)^3 [/tex]

[tex]\dfrac{Volume_1}{Volume_2} = \bigg( \dfrac{3}{5} \bigg)^3 [/tex]

[tex]\dfrac{Volume_1}{Volume_2} = \dfrac{27}{125}[/tex]

-------------------------------------------------------------------

Answer: The ratio for the volume = 27 : 125

-------------------------------------------------------------------

[tex] \dfrac{Area_1}{Area_2} = \bigg( \dfrac{3}{5} \bigg)^2 [/tex]

[tex] \dfrac{Area_1}{Area_2} = \dfrac{9}{25} [/tex]

-------------------------------------------------------------------

Answer: The ratio of area = 9 : 25

-------------------------------------------------------------------

[tex]\dfrac{Volume_1}{Volume_2} = \bigg( \dfrac{Length_1}{Length_2} \bigg)^3 [/tex]

[tex]\dfrac{Volume_1}{Volume_2} = \bigg( \dfrac{3}{5} \bigg)^3 [/tex]

[tex]\dfrac{Volume_1}{Volume_2} = \dfrac{27}{125}[/tex]

-------------------------------------------------------------------

Answer: The ratio for the volume = 27 : 125

-------------------------------------------------------------------