Quadrilateral JKLM has vertex coordinates J(2,4), K(6,1), L(2,-2), and M(-2,1). What type of quadrilateral is JKLM?
Accepted Solution
A:
Find lengths of quadrilateral sides: [tex] |JK|=\sqrt{(6-2)^2+(1-4)^2} =\sqrt{16+9}=5 [/tex], [tex] |KL|=\sqrt{(2-6)^2+(-2-1)^2} =\sqrt{16+9}=5 [/tex], [tex] |LM|=\sqrt{(2-(-2))^2+(-2-1)^2} =\sqrt{16+9}=5 [/tex], [tex] |MJ|=\sqrt{(-2-2)^2+(1-4)^2} =\sqrt{16+9}=5 [/tex]. Since all sides have the same lengths, you can state that this quadrilateral is rhombus. Let's check whether quadrilateral JKLM is a square. To check this let find the lengths of diagonals: [tex] |JL|=\sqrt{(2-2)^2+(-2-4)^2} =\sqrt{0+36}=6 [/tex],
[tex] |MK|=\sqrt{(-2-6)^2+(1-1)^2} =\sqrt{64+0}=8 [/tex].
The lengths are different, so quadrilateral is not a square.