1. m2(36m4+12m2+1)2. Rewrite m4m4 as (m2)2(m2)2.3. m2(36(m2)2+12m2+1)4. Let u=m2u=m2. Substitute uu for all occurrences of m2m2. =m2(36u2+12u+1) 5. Rewrite 36u236u2 as (6u)2(6u)2.5. m2((6u)2+12u+1)6. Rewrite 11 as 127. m2((6u)2+12u+12)8. Check the middle term by multiplying 2ab and compare this result with the middle term in the original expression.9. 2ab=2⋅(6u)⋅12ab=2⋅(6u)⋅110. Simplify. 2ab=12u 11. Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2, where a=6ua=6u and b=1b=1.12. m2(6u+1)2m2(6u+1)213. Replace all occurrences of uu with m2m2. m^2(6m^2+1)^2