What is the radius of a sphere if its surface area is 2,122.64 square inches? (Use 3.14 for π.) 11 in. 13 in. 121 in. 169 in.
Accepted Solution
A:
To solve this, we are going to use the surface are of a sphere formula: [tex]A=4 \pi r^2[/tex] where [tex]A[/tex] is the surface area of the sphere [tex]r[/tex] is the radius of the sphere
We know for our problem that [tex]A=2122.64[/tex] and [tex] \pi =3.14[/tex], so lets replace those vales in our formula: [tex]A=4 \pi r^2[/tex] [tex]2122.64=4(3.14)r^2[/tex] [tex]2122.64=12.56r^2[/tex] Now, we just need to solve our equation for [tex]r[/tex]: [tex] \frac{2122.64}{12.56} =r^2[/tex] [tex] r^2=\frac{2122.64}{12.56}[/tex] [tex]r^2=169[/tex] [tex]r=+or- \sqrt{169} [/tex] [tex]r=13[/tex] or [tex]r=13[/tex] Since the radius of a sphere cannot be a negative number, [tex]r=13[/tex].
We can conclude that the radius of a sphere with surface area 2,122.64 [tex]in^2[/tex] is 13 in.