Q:

The volume of two spheres are 327\pi in^{3} and 8829\pi in^{3}What is the ratio of their radii?

Accepted Solution

A:
a dimension of a sphere is its radius, so it correlates with its volume, thus

[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------[/tex]

[tex]\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ %The volume of two spheres are 327\pi in^{3} and 8829\pi in^{3} \cfrac{small}{large}\qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{s}{s}=\cfrac{\sqrt[3]{327}}{\sqrt[3]{8829}}\qquad \begin{cases} 8829=3\cdot 3\cdot 3\cdot 327\\ \qquad 3^3\cdot 327 \end{cases}[/tex]

[tex]\bf \cfrac{s}{s}=\cfrac{\sqrt[3]{327}}{\sqrt[3]{3^3\cdot 327}}\implies \cfrac{s}{s}=\cfrac{\underline{\sqrt[3]{327}}}{3\underline{\sqrt[3]{327}}}\implies \cfrac{s}{s}=\cfrac{1}{3}[/tex]