Q:

Factor the trinomial 8x^2-12x-8

Accepted Solution

A:
Answer:[tex](x-2)(8x+4)[/tex]Step-by-step explanation:we have[tex]8x^{2} -12x-8[/tex]Equate to zero and find the roots of the quadratic equationThe formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]in this problem we have[tex]8x^{2} -12x-8=0[/tex]so[tex]a=8\\b=-12\\c=-8[/tex]substitute in the formula[tex]x=\frac{-(-12)(+/-)\sqrt{-12^{2}-4(8)(-8)}} {2(8)}[/tex][tex]x=\frac{12(+/-)\sqrt{400}} {16}[/tex][tex]x=\frac{12(+/-)20} {16}[/tex][tex]x_1=\frac{12(+)20} {16}=2[/tex][tex]x_2=\frac{12(-)20} {16}=-\frac{1}{2}[/tex]therefore[tex]8x^{2} -12x-8=8(x-2)(x+\frac{1}{2})=(x-2)(8x+4)[/tex]